Exercise 57

The figure shows a circular arc of length s and a chord of length d, both subtended by a central angle θ. Find

$$
\lim _{\theta \rightarrow 0^{+}} \frac{s}{d}
$$

Solution

Use the law of cosines to write d in terms of θ. Let r be the radius of the circle.

$$
\begin{aligned}
d^{2} & =r^{2}+r^{2}-2(r)(r) \cos \theta \\
& =2 r^{2}-2 r^{2} \cos \theta \\
& =2 r^{2}(1-\cos \theta)
\end{aligned}
$$

Solve for d.

$$
d=r \sqrt{2(1-\cos \theta)}
$$

The arc length for a circle is just $s=r \theta$. Now calculate the desired limit by writing it in terms of a known limit.

$$
\begin{aligned}
\lim _{\theta \rightarrow 0^{+}} \frac{s}{d}=\lim _{\theta \rightarrow 0^{+}} \frac{r \theta}{r \sqrt{2(1-\cos \theta)}} & =\lim _{\theta \rightarrow 0^{+}} \frac{\theta}{\sqrt{2(1-\cos \theta)}} \\
& =\lim _{\theta \rightarrow 0^{+}} \frac{\theta}{2 \sqrt{\frac{1-\cos \theta}{2}}} \\
& =\lim _{\theta \rightarrow 0^{+}} \frac{\frac{\theta}{2}}{\sin \frac{\theta}{2}} \\
& =\lim _{\alpha \rightarrow 0^{+}} \frac{\alpha}{\sin \alpha} \\
& =\lim _{\alpha \rightarrow 0^{+}} \frac{1}{\frac{\sin \alpha}{\alpha}} \\
& =\frac{1}{\lim _{\alpha \rightarrow 0^{+}} \frac{\sin \alpha}{\alpha}} \\
& =1
\end{aligned}
$$

